13 Stellen - Berlin, Deutschland - Technische Universität Berlin

Lena Wagner

Geschrieben von:

Lena Wagner

beBee Recruiter


Beschreibung
Berlin Quantum (BQ)


13 Stellen - Wiss. Mitarbeiterin (Post Doc) (d/m/w) - Entgeltgruppe 13 TV-L Berliner Hochschulen - 2.

Qualifizierungsphase (zur Habilitation):

Teilzeitbeschäftigung ist ggf. möglich


Aufgabenbeschreibung:

Die Berliner Quanteninitiative (BQ) ist Teil der Berliner Universitätsallianz. Sie bündelt die Kompetenzen der Berliner Universitäten und Forschungseinrichtungen in den photonischen Quantentechnologien.

BQ initiiert und baut Kooperationen zwischen Wissenschaft und Wirtschaft aus, um ein national und international wettbewerbsfähiges Ökosystem für Quantentechnologien zu schaffen.

Ziel ist es, sowohl die Quantengrundlagenforschung als auch den Transfer von Quantentechnologien in die Praxis zu stärken.


Für die insgesamt 13 ausgeschriebenen Post-Doc Stellen gibt es die im Folgenden aufgeführten siebzehn Projektvorschläge an den genannten Einrichtungen, auf die sich Interessierte bewerben können.

Im Falle einer Bewerbung geben Sie bitte das Projekt an, auf welches sich Ihre Bewerbung bezieht.

Bewerbungen auf mehrere Projekte sind möglich (bis zu drei), wobei für den Projektwunsch eine Priorisierung (Platz 1, 2 usw.) in den Bewerbungsunterlagen angegeben werden muss.


Die Stellen beinhalten Lehrverpflichtungen.

Generating non-classical states with a quantum memory (P1)

In this experimental project single photons stored in an atomic quantum memory are added to classical light to generate non-Gaussian states for quantum information processing.

An existing room-temperature Cs EIT memory must be modified for photon-adding and partial storage sequences. Ideally, a theoretical description should be developed as well. [project description P1].


Controlling quantum states of light via reservoir engineering (Theory) (P2)

We will theoretically explore the controlled preparation of collective quantum states of light using engineered reservoirs of driven-dissipative (artificial) atoms.

A particular focus will lie on optical fiber systems realized in the Rauschenbeutel lab, with whom a collaboration is planned [project description P2].


Ultra-precisely verifying quantum devices (P3)

This project sets out to develop novel tools for benchmarking and verification, based on notions of cross-device benchmarking and randomized measurements.

The project is mathematically minded and makes use of sophisticated tools, but at the same time respects desiderata arising from experimental implementations [project description P3].


Quantum state engineering in van der Waals heterostructures (P4)

The project will investigate the dynamics of excited states in engineered van der Waals heterostructures by means of multidimensional photoemission spectroscopy.

This study would on one hand shed light on the many-body microscopic interactions governing the quantum state of the material, and additionally aim at a controlled tailoring of quantum Hamiltonians in solid-state systems.

[project description P4].


Exploiting High-Dimensional Entanglement for Quantum Networking (P5)

Taming quantum fluctuation-induced phenomena (P6)

Realizing holographic codes on quantum devices (P7)

The goal of this project is to identify instances of holographic quantum error-correcting codes that are suitable for current and near-term quantum devices, as well as developing the necessary theoretical tools for their implementation, working in collaboration with both theoretical and applied groups [project description P7].


Control of quantum reservoir engineering for robust state preparation (P8)
In adiabatic master equations, the jump operators become dependent on external drives of the system.

The goal of this project is to understand this dependence and use it to derive robust protocols to prepare useful quantum states, such as entangled states or squeezed states [project description P8].


Efficient Tomography for Quantum Information Processing (P9)

We address the challenge of growing complexity in quantum circuits by developing and implementing efficient schemes for tomography and state characterization.

Central element of this project is a multiplexed photon source and a programmable integrated photonic circuit to test and tailor the schemes towards experimental requirements.

[project description P9.]


Delegated Quantum Computation in realistic environment (P10)
The project will explore how delegated quantum computation can be done securely and eKiciently in near-term quantum devices. DiKerent possibilities for implementations will be explored and optimization of the necessary resources will be examined [project description P10].


Quantum Sensing with Many Undetected Photons (P11)
Quantum sensing with undetected photons is an emerging technique facilitating sensing with under-explored wavelengths like mid
- and far-infrared. This project aims to extend this technique to the many-photon regime, enabling the exploration of uniquely quantum phenomena including super-sensitivity

Mehr Jobs von Technische Universität Berlin